RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2018 FIRST YEAR [BATCH 2018-21] Date : 14/12/2018 COMPUTER SCIENCE (Honours) Time : 11 am – 3 pm Paper : I Full Marks : 75 (Use a separate Answer book for each group) Group – A

1 X 5

Answer any one question from Question Nos. 1 & 2:

1.	a)	Write an algorithm for conversion of decimal integers to integers in radix R, where $R < 10$.	4
	b)	State any two characteristics that an algorithm should have.	1
2.	a)	Perform the following using 2's complement method: $(1011.11)_2 - (101.01)_2$	2
	b)	Perform the following conversion : $(0.9512)_{10}$ to its equivalent octal number.	1
	c)	Convert the following pattern, in Gray code format, to its equivalent binary code: $(1011101)_G$	2
An	swer	any two question from Question Nos. 3 & 6:	2 X 10
3.	a)	Define prime implicant.	1
	b)	Obtain the dual of the following function. $\overline{xyz} + \overline{xyz} + \overline{xyz} + \overline{xyz} + \overline{xyz}$	1
	c)	Realize X-OR logic using NAND and NOR logic respectively.	1.5 + 1.5
	d)	Define minterm and maxterm in connection with a Boolean expression. Express the following	
		Boolean function as a sum of minterms : $F(x,y,z) = x+yz$	(1+1)+3
4.	a)	State and prove the distribution law for Boolean algebra.	2+2
	b)	State the limitations of 'Karnaugh Map'.	2
	c)	Draw the Binary Decision Diagram for the following function.	
		$f(x_1, x_2, x_3) = \overline{x_1} \overline{x_2} \overline{x_3} + x_1 x_2 + x_2 x_3$	4
5.	a)	Write down the connectives of propositional logic.	2
	b)	Define tautology & contingency.	2+2
	c)	Define CNF and DNF.	2+2
6.	a)	For a code to be self-complementing what must be the sum of all its weights and why?	2
	b)	Discuss on the demerits of machine language use in connection with an application development	1
	c)	What is a non-weighted code? Give two example of the same	1+1
	d)	A 12-bit Hamming code word contains 8-bits of data What is the original 8-bit word if the	2
	u)	12-bit read out as follows ? 1010 1001 1101	3
	e)	Determine the possible base in the following operation.	
		23+44+14+32=223	1

<u>Group – B</u>

Ans	Answer any five questions Question Nos. 7 & 14 :				
7.	a)	Design a logic circuit to convert a 4-bit binary code to its equivalent Gray code format.	4		
	b)	Construct a 5-to-32 line decoder with four 3-to-8 line decoders with enable input and one 2-			
		to-4 line decoder and explain its operation.	4+2		
8.	a)	Mention the main characteristics of Von Neumann architecture.	2		
	b)	Show how Booth's multiplication algorithm performs fewer addition and subtraction than a			
		straight forward algorithm. perform $(5)_{10} \times (2)_{10}$ using Booth's algorithm.	2+3		
	c)	Design a 2-bit asynchronous down counter using positive adge triggered D flip-flop.	3		
9.	a)	Represent (59.125) ₁₀ in IEEE single precision format.	3		
	b)	Implement the operation of a 2-input NAND gate using suitable multiplexer.	4		
	c)	Realize a J-K flip-flop using a D flip-flop.	3		
10.	a)	What is an addressing mode ?	2		
	b)	Briefly state the differences between a RISC architecture and a CISC architecture.	2		
	c)	Design a 3-bit universal shift register using the following mode of operation table.	4		

s ₁	S ₁	Operation
0	0	Parallel Load
0	1	Shift Left
1	0	Shift Right
1	1	No Change

d) What is a Johnson's Counter ?

- 11. a) Design a 128×8 RAM using 64×8 RAMs and other necessary combinational circuit.
 - b) What do you mean by Content Addressable Memory (CAM) ?
 - c) How does a Master-Slave flip-flop solve the problem caused by the race around condition ?
 - d) Explain race around condition.

The above synchronous sequential circuit built using JK flip flops is initialized with $Q_2Q_1Q_0 = 000$. Find out the state sequence for this circuit for the next three clock cycles.

- 12. a) What does the hardwired control generator consists of ? What is the role of a control word in a microprogrammed control unit ?
 - b) A computer has 256 MB of main memory. The 1 MB cache uses direct mapping with block size of 16 words. How many bits are there in tag, line and word fields of the address format.

3

2

3 2

2

3

C	c)	State the modes of operation that are followed at the time of direct memory access.	
(d)	' A decoder with an enable input is called a demultiplexer' — Justify.	2
13. a	a)	What is a tri-state device ? Briefly state its importance.	4
ł	b)	What do you mean by vectored interrupt ? Give proper example.	2
(c)	Design and implement the logic circuit of a BCD adder.	4
14. a	a)	What is bus arbitration ? What is drawback of daisy chaining ? How can it be reduced ?	4
ł	b)	Discuss on different cache write policies.	3
C	c)	Design a combination logic circuit to produce 2's complement of a 3-bit binary number.	3

_____ X _____